Nick Morse

Curriculum Vitae

+43 660 404 6155
 ntmorse4@gmail.com
 morse129.github.io
 Citizenship: USA
 Graz, Austria

Researcher with expertise in large-eddy simulation and direct numerical simulation of turbulent boundary layers, jets, and multiphase flows.

Education

- 2023 **PhD**, Aerospace Engineering & Mechanics, University of Minnesota Thesis: "High-fidelity unstructured overset simulation of complex turbulent flows" C Adviser: Professor Krishnan Mahesh
- 2020 MS, Aerospace Engineering & Mechanics, University of Minnesota
- 2018 **BAEM**, *Aerospace Engineering & Mechanics*, University of Minnesota *Minors*: Math, Astrophysics

Skills

Coding	Fortran, Python, Matlab, Bash, Git	CFD	OpenFOAM, ANSYS, Basilisk
HPC	MPI, Make, CMake, Hypre	Meshing	Pointwise, GridPro, Salome, Gmsh
Visualization	ParaView, Tecplot, PyVista, Blender	Engineering	SolidWorks, Simulink
Office	LATEX, Microsoft Office	Manufacturing	Lathe, mill, waterjet, composites

Experience

2025-Present Group Leader: Multiscale CFD, Research Center Pharmaceutical Engineering, Graz, Austria

2023–Present Senior Scientist, Research Center Pharmaceutical Engineering, Graz, Austria

- Led the simulation strategy development for an EU Horizon 2020 project.
- Coded a boundary element method from scratch to resolve sub-Kolmogorov-scale droplet breakup.
 Discretization: Unstructured Lagrange 6-point triangular cells, Gauss-Legendre quadrature, feature-preserving adaptive mesh refinement, curvature-adaptive Laplacian mesh smoothing.
 - Numerics: Adaptive RK2 time stepping, matrix-free GMRES(k), fast multipole method acceleration.
 - *I/O*: Binary VTK and Gmsh grid/solution files, automatic grid generation.
- Implemented an ethanol-water mixture model in OpenFOAM to simulate impingement jet mixing.

2018–2023 **Graduate Research Assistant**, *University of Minnesota*, Minneapolis, MN, USA *Computational Fluids Lab* (Professor Krishnan Mahesh)

• Performed large-scale (~10000 processor) simulations of complex turbulent flows using HPC.

- Derived a streamline coordinate system to analyze curvature effects of an axisymmetric turbulent boundary layer.
- Resolved experimental trip wires in LES to analyze model-scale boundary layer memory effects.
- Identified mixing-enhancing secondary vortices from DNS and DMD of a jet in crossflow.
- Extended an in-house unstructured finite-volume overset LES/DNS method in Fortran (MPI).
 - Implemented support for hypre GPU solvers with minimized LHS matrix reconstruction.
 - Added non-orthogonal Crank-Nicolson viscous flux correction and LES source terms.
 - Created grid cutting and hierarchy algorithms for overset assembly of grids for complex geometries.

2016–2017 Undergraduate Research Assistant, University of Minnesota, Minneapolis, MN, USA

Turbulent Shear Flow Lab (Professor Ellen Longmire)

- Designed controllable-buoyancy spheres to study particle transport in a turbulent boundary layer.
- Characterized the particle restitution coefficient's Stokes number dependence using high speed cameras and Matlab image analysis.
- Measured vibrations of a water tunnel traverse system to investigate PIV imaging errors.

2014–2019 Chief Engineer & Aerodynamics Designer, University of Minnesota Formula SAE

- Directed systems-level engineering design and led weekly meetings of a 70-member team.
- Programmed a MATLAB graphical user interface to parameterize multi-element wing profiles.
- Automated large-scale ANSYS CFX simulations at the Minnesota Supercomputing Institute.

Service

2025 Co-organizer of an international workshop at the *Banff International Research Station*: "Particulates across Scales: Mathematical Modeling, Computation, and Applications"

Publications

Journal articles

N. Morse and K. Mahesh. Tripping effects on model-scale studies of flow over the DARPA SUBOFF *Journal of Fluid Mechanics*, 975:A3, 2023.

N. Morse and K. Mahesh. Effect of tabs on the shear layer dynamics of a jet in cross-flow *C*. *Journal of Fluid Mechanics*, 958:A6, 2023.

N. Morse and K. Mahesh. Large-eddy simulation and streamline coordinate analysis of flow over an axisymmetric hull *C*. *Journal of Fluid Mechanics*, 926:A18, 2021.

Conference papers & abstracts

N. Morse, J. Remmelgas, and J. Khinast. A simulation framework for nanodroplet breakup in top-down nanoparticle production C. In *AIChE Annual Meeting*, 2024.

M. Fenelon, Y. Zhang, L. Cattafesta, **N. Morse**, K. Mahesh, L. Li, and Z. Pan. Optimized timing schemes for multi-pulse shake-the-box particle tracking velocimetry **Z**. In *AIAA SciTech Forum*, 2023.

N. Morse and K. Mahesh. The shear layer structure of a tabbed jet in crossflow \mathbb{C} . In 75th Annual Meeting of the APS DFD, 2022.

M. Fenelon, L. Cattafesta, Y. Zhang, K. Mahesh, and **N. Morse**. Optimizing dt for MP-STB in particle tracking velocimetry \mathcal{C} . In *75th Annual Meeting of the APS DFD*, 2022.

N. Morse, T. Kroll, and K. Mahesh. Large-eddy simulation of submerged marine vehicles C. In *Proceedings of the 34th Symposium on Naval Hydrodynamics, Washington, DC*, 2022.

N. Morse and K. Mahesh. Streamline coordinate analysis of the flow past an axisymmetric body computed by large-eddy simulation \mathcal{C} . In 74th Annual Meeting of the APS DFD, 2021.

N. Morse and K. Mahesh. Large-eddy simulation of appended submerged vehicles using an unstructured overset grid method \mathcal{C} . In *73rd Annual Meeting of the APS DFD*, 2020.

T. Kroll, **N. Morse**, W. Horne, and K. Mahesh. Large eddy simulation of marine flows over complex geometries using a massively parallel unstructured overset method \mathfrak{C} . In *Proceedings of the 33rd Symposium on Naval Hydrodynamics, Osaka, Japan*, 2020.

N. Morse, W. Horne, and K. Mahesh. Towards large-eddy simulation of maneuvering vehicles using an unstructured overset grid method C. In *72nd Annual Meeting of the APS DFD*, 2019.

D. Barros, Y. H. Tee, **N. Morse**, B. Hiltbrand, and E. Longmire. Investigation of particle lift off in a turbulent boundary layer **C**. In *70th Annual Meeting of the APS DFD*, 2017.

References

Professor Krishnan Mahesh	krmahesh@umich.edu	University of Michigan
Professor Ellen Longmire	longmire@umn.edu	University of Minnesota
Dr. Praveen Kumar	praveen.kumar9@ge.com	GE Global Research

Interests

Mountain biking, road cycling, skiing, running, hiking, tennis, bouldering